Search results
Results from the WOW.Com Content Network
In multiphase flow in porous media, the relative permeability of a phase is a dimensionless measure of the effective permeability of that phase. It is the ratio of the effective permeability of that phase to the absolute permeability. It can be viewed as an adaptation of Darcy's law to multiphase flow.
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
Furthermore, TEM-function in two-phase flow systems is an extension of RQI (rock quality index) for single-phase systems. [1] Also, TEM-function can be used for averaging relative permeability curves (for each fluid phase separately, i.e., water, oil, gas, CO 2). [1]
The physical property that links the flow equations of the three fluid phases, is relative permeability of each fluid phase and pressure. This property of the fluid-rock system (i.e. water-oil-gas-rock system) is mainly a function of the fluid saturations , and it is linked to capillary pressure and the flowing process, implying that it is ...
The reduced permeability correlated non-linearly with volume fraction of the other phase, and the reduction factor (or function) is denoted relative permeability. [4] The formulation is based on Muskat's theory that the porous medium has a local structure of macroscopic size that is defined by the saturations, or volume fractions, of the fluid ...
A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials commonly range typically from a fraction to several thousand ...
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.