enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems. Riemannian geometry and contact geometry have been used to construct the formalism of geometrothermodynamics which has found applications in classical equilibrium thermodynamics.

  3. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares can also be illustrated geometrically as the difference of two square areas in a plane. In the diagram, the shaded part represents the difference between the areas of the two squares, i.e. a 2 − b 2 {\displaystyle a^{2}-b^{2}} .

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The intrinsic geometry of this surface is now better understood in terms of the Poincaré metric on the upper half plane or the unit disc, and has been described by other models such as the Klein model or the hyperboloid model, obtained by considering the two-sheeted hyperboloid q(x, y, z) = −1 in three-dimensional Minkowski space, where q(x ...

  5. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, [a] which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental ...

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry . Analytic geometry is used in physics and engineering , and also in aviation , rocketry , space science , and spaceflight .

  7. Geometry and topology - Wikipedia

    en.wikipedia.org/wiki/Geometry_and_topology

    In mathematics, geometry and topology is an umbrella term for the historically distinct disciplines of geometry and topology, as general frameworks allow both disciplines to be manipulated uniformly, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and Chern–Weil theory.

  8. Taxicab geometry - Wikipedia

    en.wikipedia.org/wiki/Taxicab_geometry

    Taxicab geometry can be used to assess the differences in discrete frequency distributions. For example, in RNA splicing positional distributions of hexamers, which plot the probability of each hexamer appearing at each given nucleotide near a splice site, can be compared with L1-distance. Each position distribution can be represented as a ...

  9. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    Apart from a subtle difference in meaning for the exterior product with respect to differential forms versus the exterior product with respect to vectors (in the former the increments are covectors, whereas in the latter they represent scalars), we see the correspondences of the differential form