Search results
Results from the WOW.Com Content Network
Pages in category "Theorems about circles" The following 21 pages are in this category, out of 21 total. This list may not reflect recent changes. B. Butterfly ...
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes. C.
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
A circle bounds a region of the plane called a disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern
The theorem can be reversed to say: for three circles intersecting at M, a line can be drawn from any point A on one circle, through its intersection C´ with another to give B (at the second intersection). B is then similarly connected, via intersection at A´ of the second and third circles, giving point C.
As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...