Search results
Results from the WOW.Com Content Network
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 [1] and published in 1961. [2] It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. [3]
qsort is a C standard library function that implements a sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function. It is named after the "quicker sort" algorithm [1] (a quicksort variant due to R. S. Scowen), which was originally used to implement it in the Unix C library, although the C standard does not require it to implement quicksort.
Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-and-conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst and average ...
The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform .
Multi-key quicksort, also known as three-way radix quicksort, [1] is an algorithm for sorting strings.This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; [2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. [3]
A popular choice to implement this algorithm scheme is to combine quickselect and quicksort; the result is sometimes called "quickselsort". [1] Common in current (as of 2022) C++ STL implementations is a pass of heapselect for a list of k elements, followed by a heapsort for the final result. [2]
In space performance, spreadsort is worse than most in-place algorithms: in its simplest form, it is not an in-place algorithm, using O(n) extra space; in experiments, about 20% more than quicksort using a c of 4–8. With a cache-aware form (as included in Boost.Sort), less memory is used and there is an upper bound on memory usage of the ...
On the other hand, some algorithms handle external sorting rather better. A Merge sort breaks the data up into chunks, sorts the chunks by some other algorithm (maybe bubblesort or Quick sort) and then recombines the chunks two by two so that each recombined chunk is in order. This approach minimises the number or reads and writes of data ...