Search results
Results from the WOW.Com Content Network
The short ladder in the complex solution in the 3, 2, 1 case appears to be tilted at 45 degrees, but actually slightly less with a tangent of 0.993. Other combinations of ladder lengths and crossover height have comparable complex solutions. With combination 105, 87, 35 the short ladder tangent is approximately 0.75.
The arc length of one branch between x = x 1 and x = x 2 is a ln y 1 / y 2 . The area between the tractrix and its asymptote is π a 2 / 2 , which can be found using integration or Mamikon's theorem. The envelope of the normals of the tractrix (that is, the evolute of the tractrix) is the catenary (or chain curve) given by y = a ...
The same inversion transforms the third circle into another circle. The solution of the inverted problem must either be (1) a straight line parallel to the two given parallel lines and tangent to the transformed third given circle; or (2) a circle of constant radius that is tangent to the two given parallel lines and the transformed given circle.
In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.
A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions:
The elastic half-space problem is solved analytically, see the Boussinesq-Cerruti solution. Due to the linearity of this approach, multiple partial solutions may be super-imposed. Using the fundamental solution for the half-space, the full 3D contact problem is reduced to a 2D problem for the bodies' bounding surfaces.
The Vaqueros (3-3) entered with a three-game winning streak. Tonje coming off a 41-point effort in a win over Arizona, hit four free throws to give Wisconsin an 82-77 lead with just over two ...
The goat problems do not yield any new mathematical insights; rather they are primarily exercises in how to artfully deconstruct problems in order to facilitate solution. Three-dimensional analogues and planar boundary/area problems on other shapes, including the obvious rectangular barn and/or field, have been proposed and solved. [1]