Search results
Results from the WOW.Com Content Network
+100 °Bé (specific gravity, 3.325) would be among the densest fluids known (except some liquid metals), such as diiodomethane. Near 0 °Bé would be approximately the density of water. −100 °Bé (specific gravity, 0.615) would be among the lightest fluids known, such as liquid butane .
True specific gravity of a liquid can be expressed mathematically as: =, where is the density of the sample and is the density of water. The apparent specific gravity is simply the ratio of the weights of equal volumes of sample and water in air: =,,, where , represents the weight of the sample measured in air and , the weight of an equal ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
A density meter does not measure the specific gravity of a sample directly. However, the specific gravity can be inferred from a density meter. The specific gravity is defined as the density of a sample compared to the density of a reference. The reference density is typically of that of water. The specific gravity is found by the following ...
Concentrated sulfuric acid with a specific gravity of 1.8 has a Twaddell scale measurement of 160 (as per the linear relationship between readings and sp. gravity). The Twaddell scale is only used for liquids with specific gravity greater than that of water. The scale was used in the British dye and bleach manufacturing industries.
It measures the density of the fluid. Where no sugar or other dissolved substances are present, the specific gravity of a solution of ethanol in water can be directly correlated to the concentration of alcohol. Saccharometers for measuring sugar-water mixtures measure densities greater than water.
The specific gravity of an object, typically a solid, is determined by noting how much the spring lengthens when the object is resting in the upper pan in air (), and then when the object is moved to the lower pan and immersed in water (′). The specific gravity is (′).