enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The Hill sphere is a common model for the calculation of a gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical body ( m ) in which it dominates over the gravitational influence of other bodies, particularly a primary ( M ). [ 1 ]

  3. Talk:Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Talk:Hill_sphere

    In the example to the right, Earth's Hill sphere extends between the Lagrangian points L1 and L2, which lie along the line of centers of the two bodies. is difficult to correlate with the diagram. There is no circle passing through both L1 and L2, but that's what I expect from the text.

  4. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    A sphere of influence (SOI) in astrodynamics and astronomy is the oblate spheroid-shaped region where a particular celestial body exerts the main gravitational influence on an orbiting object. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons , despite the ...

  5. Roche lobe - Wikipedia

    en.wikipedia.org/wiki/Roche_lobe

    It is the easiest way for the debris to commute between a Hill sphere (an inner circle of blue and light blue) and communal gravity regions (figure-eights of yellow and green in the inner side). Hill sphere and horseshoe orbit. L 2 and L 3 are gravitational perturbation equilibria points. Passing through these two equilibrium points, debris can ...

  6. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

  7. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The Hill sphere (gravitational sphere of influence) of the Earth is about 1,500,000 kilometers (0.01 AU) in radius, or approximately four times the average distance to the Moon. [12] [nb 2] This is the maximal distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects orbiting the Earth must ...

  8. Satellite system (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Satellite_system_(astronomy)

    Gravitational accelerations at L 4. The Hill sphere is the region in which an astronomical body dominates the attraction of satellites. Of the Solar System planets, Neptune and Uranus have the largest Hill spheres, due to the lessened gravitational influence of the Sun at their far orbits, however all of the giant planets have Hill spheres in the vicinity of 100 million kilometres in radius.

  9. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also have the geometry of geodesic polyhedra.