enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The Hill sphere is a common model for the calculation of a gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical body ( m ) in which it dominates over the gravitational influence of other bodies, particularly a primary ( M ). [ 1 ]

  3. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    A sphere of influence (SOI) in astrodynamics and astronomy is the oblate spheroid-shaped region where a particular celestial body exerts the main gravitational influence on an orbiting object. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons , despite the ...

  4. Roche lobe - Wikipedia

    en.wikipedia.org/wiki/Roche_lobe

    It is the easiest way for the debris to commute between a Hill sphere (an inner circle of blue and light blue) and communal gravity regions (figure-eights of yellow and green in the inner side). Hill sphere and horseshoe orbit. L 2 and L 3 are gravitational perturbation equilibria points. Passing through these two equilibrium points, debris can ...

  5. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    Again, if the mass of the smaller object (M 2) is much smaller than the mass of the larger object (M 1) then L 2 is at approximately the radius of the Hill sphere, given by: The same remarks about tidal influence and apparent size apply as for the L 1 point.

  6. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The two-body problem is interesting in astronomy because pairs of astronomical objects are often moving rapidly in arbitrary directions (so their motions become interesting), widely separated from one another (so they will not collide) and even more widely separated from other objects (so outside influences will be small enough to be ignored safely).

  7. Roche limit - Wikipedia

    en.wikipedia.org/wiki/Roche_limit

    In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's self-gravitation. [1]

  8. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [1] Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars.

  9. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...