Ads
related to: importance of magnet
Search results
Results from the WOW.Com Content Network
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles. There are two simplified models for the nature of these dipoles: the magnetic pole model and the Amperian loop model .
A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.
Overhead magnets, magnetic pulleys, and the magnetic drums were the methods used in the recycling industry. [1] Magnetic separation is also useful in mining iron as it is attracted to a magnet. [3] Another application, not widely known but very important, is to use magnets in process industries to remove metal contaminants from product streams. [1]
After important contributions of Hendrik Lorentz and Henri Poincaré, in 1905, Albert Einstein solved the problem with the introduction of special relativity, which replaced classical kinematics with a new theory of kinematics compatible with classical electromagnetism.
An important effect in metals under strong magnetic fields, is the oscillation of the differential susceptibility as function of 1 / H . This behaviour is known as the De Haas–Van Alphen effect and relates the period of the susceptibility with the Fermi surface of the material.
Technologically, this is one of the most important processes in magnetism that is linked to the magnetic data storage process such as used in modern hard disk drives. [5] As it is known today, there are only a few possible ways to reverse the magnetization of a metallic magnet: an applied magnetic field [5]
Ads
related to: importance of magnet