Search results
Results from the WOW.Com Content Network
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some ...
The arithmetic–geometric mean of two numbers, a 0 and b 0, is found by calculating the limit of the sequences + = +, + =, which both converge to the same limit. If = and = then the limit is () where () is the complete elliptic integral of the first kind
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2]
Informally, a sequence converges if it has a limit. Continuing informally, a (singly-infinite) sequence has a limit if it approaches some point x, called the limit, as n becomes very large. That is, for an abstract sequence (a n) (with n running from 1 to infinity understood) the distance between a n and x approaches 0 as n → ∞, denoted
In this case 14:9 is exactly the arithmetic mean of : and : =:, since 14 is the average of 16 and 12, while the precise geometric mean is :, but the two different means, arithmetic and geometric, are approximately equal because both numbers are sufficiently close to each other (a difference of less than 2%).
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic ...