Search results
Results from the WOW.Com Content Network
Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan.
By taking conjugates, the number p k (n) of partitions of n into exactly k parts is equal to the number of partitions of n in which the largest part has size k. The function p k (n) satisfies the recurrence p k (n) = p k (n − k) + p k−1 (n − 1) with initial values p 0 (0) = 1 and p k (n) = 0 if n ≤ 0 or k ≤ 0 and n and k are not both ...
In a touching Secret Santa exchange captured on TikTok, Mary Kate gifts Giuliana a personalized purse with a special message from her late mother
Colossally abundant numbers were first studied by Ramanujan and his findings were intended to be included in his 1915 paper on highly composite numbers. [2] Unfortunately, the publisher of the journal to which Ramanujan submitted his work, the London Mathematical Society, was in financial difficulties at the time and Ramanujan agreed to remove aspects of the work to reduce the cost of printing ...