Search results
Results from the WOW.Com Content Network
Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node may invalidate the balancing invariant. This can be fixed with rotations. The following is the join algorithms on different balancing schemes.
A tournament tree can be represented as a balanced binary tree by adding sentinels to the input lists (i.e. adding a member to the end of each list with a value of infinity) and by adding null lists (comprising only a sentinel) until the number of lists is a power of two. The balanced tree can be stored in a single array.
In some variants of the Minimalist Program Merge is triggered by feature checking, e.g. the verb eat selects the noun cheesecake because the verb has an uninterpretable N-feature [uN] ("u" stands for "uninterpretable"), which must be checked (or deleted) due to full interpretation. [6]
To merge the two trees, apply a merge algorithm to the right spine of the left tree and the left spine of the right tree, replacing these two paths in two trees by a single path that contains the same nodes. In the merged path, the successor in the sorted order of each node from the left tree is placed in its right child, and the successor of ...
A graph exemplifying merge sort. Two red arrows starting from the same node indicate a split, while two green arrows ending at the same node correspond to an execution of the merge algorithm. The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm. Conceptually, the merge sort algorithm ...
To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:
Unlike a binary search tree, in a splay tree after deletion, we splay the parent of the removed node to the top of the tree. Alternatively: The node to be deleted is first splayed, i.e. brought to the root of the tree and then deleted. leaves the tree with two sub trees. The two sub-trees are then joined using a "join" operation.
In part 2 a slightly more complex merge happens. The tree with the lower value (tree x) has a right child, so merge must be called again on the subtree rooted by tree x's right child and the other tree. After the merge with the subtree, the resulting tree is put back into tree x.