enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set. A problem with continuous variables is known as a continuous optimization, in which an optimal value from a continuous function must be found.

  3. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    A problem with continuous variables is known as a continuous optimization, in which optimal arguments from a continuous set must be found. They can include constrained problems and multimodal problems. An optimization problem can be represented in the following way:

  4. Maximum theorem - Wikipedia

    en.wikipedia.org/wiki/Maximum_theorem

    The theorem is typically interpreted as providing conditions for a parametric optimization problem to have continuous solutions with regard to the parameter. In this case, Θ {\displaystyle \Theta } is the parameter space, f ( x , θ ) {\displaystyle f(x,\theta )} is the function to be maximized, and C ( θ ) {\displaystyle C(\theta )} gives ...

  5. Continuous optimization - Wikipedia

    en.wikipedia.org/wiki/Continuous_optimization

    Continuous optimization is a branch of optimization in applied mathematics. [1]As opposed to discrete optimization, the variables used in the objective function are required to be continuous variables—that is, to be chosen from a set of real values between which there are no gaps (values from intervals of the real line).

  6. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from above. Using such a function, a new optimization problem is formulated, viz. minimize f(x) + μ g(x) where μ > 0 is a free parameter. This problem is not equivalent to the original, but as μ approaches zero, it becomes an ever-better ...

  7. Envelope theorem - Wikipedia

    en.wikipedia.org/wiki/Envelope_theorem

    In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. [1] As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not contribute to the change in ...

  8. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...

  9. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization.Also known as the conditional gradient method, [1] reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. [2]