Search results
Results from the WOW.Com Content Network
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...
A team of Spanish and US astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gases.
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (from Ancient Greek ἐπίκυκλος (epíkuklos) 'upon the circle', meaning "circle moving on another circle") [1] was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets.
The reference system in the solution TOP2013 is defined by the dynamical equinox and ecliptic of J2000.0. [11] The TOP2013 solution is the best for the motion over the time interval −4000...+8000. Its precision is of a few 0.1″ for the four planets, i.e. a gain of a factor between 1.5 and 15, depending on the planet, compared to VSOP2013.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation.
Standish worked on the Jet Propulsion Laboratory Development Ephemeris.. Early versions refined the accuracy of these fundamental astronomical data-sets by including many recent and accurate observational data, new types of data, using improved data processing methods, including refined equations of motion which more accurately described the actual physics of the solar system. [1]
Retrograde motion is orbital motion in a system, such as a planet and its satellites, that is contrary to the direction of rotation of the central body, or more generally contrary in direction to the net angular momentum of the entire system. Apparent retrograde motion is the periodic, apparently backwards motion of planetary bodies when viewed ...
Retrograde motion of Mars as viewed from the Earth. Figure 3: Planets revolving the Sun follow elliptical (oval) orbits that rotate gradually over time (apsidal precession). The eccentricity of this ellipse is exaggerated for visualization. Most orbits in the Solar System have a much smaller eccentricity, making them nearly circular.