Search results
Results from the WOW.Com Content Network
Maxwell's demon can (hypothetically) reduce the thermodynamic entropy of a system by using information about the states of individual molecules; but, as Landauer (from 1961) and co-workers [20] have shown, to function the demon himself must increase thermodynamic entropy in the process, by at least the amount of Shannon information he proposes ...
Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [23] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
Since BFGS (and hence L-BFGS) is designed to minimize smooth functions without constraints, the L-BFGS algorithm must be modified to handle functions that include non-differentiable components or constraints. A popular class of modifications are called active-set methods, based on the concept of the active set. The idea is that when restricted ...
The cross-entropy (,) is itself such a measurement (formally a loss function), but it cannot be thought of as a distance, since (,) =: is not zero. This can be fixed by subtracting H ( P ) {\displaystyle H(P)} to make D KL ( P ∥ Q ) {\displaystyle D_{\text{KL}}(P\parallel Q)} agree more closely with our notion of distance, as the excess loss.
A regularization term (or regularizer) () is added to a loss function: = ((),) + where is an underlying loss function that describes the cost of predicting () when the label is , such as the square loss or hinge loss; and is a parameter which controls the importance of the regularization term.
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.