Search results
Results from the WOW.Com Content Network
Most individuals with G6PD deficiency are asymptomatic.When it induces hemolysis, the effect is usually short-lived. [5]Most people who develop symptoms are male, due to the X-linked pattern of inheritance, but female carriers can be affected due to unfavorable lyonization or skewed X-inactivation, where random inactivation of an X-chromosome in certain cells creates a population of G6PD ...
Glucose 6-phosphatase-β is a ubiquitously expressed, 346-amino acid membrane protein that shares 36% sequence identity with glucose 6-phosphatase-α. Within the glucose 6-phosphatase-β enzyme, sequence alignments predict that its active site contains His167, His114, and Arg79.
The last step of normal gluconeogenesis, like the last step of glycogenolysis, is the dephosphorylation of G6P by glucose-6-phosphatase to free glucose and PO 4. Thus glucose-6-phosphatase mediates the final, key, step in both of the two main processes of glucose production during fasting. The effect is amplified because the resulting high ...
When either form 'a' or 'b' are in the active state, then the enzyme converts glycogen into glucose-1-phosphate. Myophosphorylase-b is allosterically activated by AMP being in larger concentration than ATP and/or glucose-6-phosphate. (See Glycogen phosphorylase§Regulation).
Glucose-6-phosphate dehydrogenase deficiency is very common worldwide, and causes acute hemolytic anemia in the presence of simple infection, ingestion of fava beans, or reaction with certain medicines, antibiotics, antipyretics, and antimalarials. [3] Cell growth and proliferation are affected by G6PD. [20]
The scope of GSD VI now also includes glycogen storage disease type VIII, [2] IX [2] (caused by phosphorylase b kinase deficiency) and X [2] (deficiency protein kinase A). The incidence of GSD VI is approximately 1 case per 65,000–85,000 births, [2] representing approximately 30% all cases of glycogen storage disease.
This reaction converts glucose 6-phosphate to fructose 6-phosphate in preparation for phosphorylation to fructose 1,6-bisphosphate. [2] The addition of the second phosphoryl group to produce fructose 1,6-bisphosphate is an irreversible step, and so is used to irreversibly target the glucose 6-phosphate breakdown to provide energy for ATP ...
This leads to very long unbranched glucose chains being stored in glycogen. The long unbranched molecules have low solubility, leading to glycogen precipitation in the liver. These deposits subsequently build up in the body tissue, especially the heart and liver. The inability to break down glycogen in muscle cells causes muscle weakness.