Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
The PTAS for minimizing sum(f(C i)) is based on some combinatorial observations: Let L := the average sum in a single subset (1/k the sum of all inputs). If some input x is at least L, then there is an optimal partition in which one part contains only x. This follows from the convexity of f. Therefore, the input can be pre-processes by ...
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
Every set can be the basis of a free abelian group, which is unique up to group isomorphisms. The free abelian group for a given basis set can be constructed in several different but equivalent ways: as a direct sum of copies of the integers, as a family of integer-valued functions, as a signed multiset, or by a presentation of a group.
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
In mathematics, the Dershowitz–Manna ordering is a well-founded ordering on multisets named after Nachum Dershowitz and Zohar Manna.It is often used in context of termination of programs or term rewriting systems.