Search results
Results from the WOW.Com Content Network
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
Many materials may be characterized as organic superconductors. These include the Bechgaard salts and Fabre salts which are both quasi-one-dimensional, and quasi-two-dimensional materials such as k-BEDT-TTF 2 X charge-transfer complex, λ-BETS 2 X compounds, graphite intercalation compounds and three-dimensional materials such as the alkali ...
In the 1950s, researchers discovered that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens. In particular, high conductivity of 0.12 S/cm was reported in perylene–iodine complex in 1954. [3] This finding indicated that organic compounds could carry current.
The first generally accepted theory of ET was developed by Rudolph A. Marcus (Nobel Prize in Chemistry in 1992) [8] to address outer-sphere electron transfer and was based on a transition-state theory approach. The Marcus theory of electron transfer was then extended to include inner-sphere electron transfer by Noel Hush and Marcus.
Organic CMOS logic circuit. Total thickness is less than 3 μm. Scale bar: 25 mm. Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity.
Interpolymer complexes (IPC) are the products of non-covalent interactions between complementary unlike macromolecules in solutions. [1] There are four types of these complexes: Interpolyelectrolyte complexes (IPEC) or polyelectrolyte complexes (PEC) [2] Hydrogen-bonded interpolymer complexes [3] Stereocomplexes [4] Charge-transfer complexes [5]
The reasons for this surge of interest are manifold. The performance of OFETs, which can compete with that of amorphous silicon (a-Si) TFTs with field-effect mobilities of 0.5–1 cm 2 V −1 s −1 and ON/OFF current ratios (which indicate the ability of the device to shut down) of 10 6 –10 8, has improved significantly.
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]