Search results
Results from the WOW.Com Content Network
The log-distance path loss model is a radio propagation model that predicts the path loss a signal encounters inside a building or densely populated areas over long distance. While the log-distance model is suitable for longer distances, the short-distance path loss model is often used for indoor environments or very short outdoor distances.
It is the most often cited of the COST 231 models (EU funded research project ca. April 1986 – April 1996), [1] also called the Hata Model PCS Extension. This model is the combination of empirical and deterministic models for estimating path loss in an urban area over frequency range of 800 MHz to 2000 MHz. [2]
Path loss is a major component in the analysis and design of the link budget of a telecommunication system. This term is commonly used in wireless communications and signal propagation. Path loss may be due to many effects, such as free-space loss, refraction, diffraction, reflection, aperture-medium coupling loss, and absorption. Path loss is ...
where is the large-scale (log-normal) fading, is a reference distance at which the path loss is , is the path loss exponent; typically =. [ 1 ] [ 2 ] This model is particularly well-suited for measurements, whereby P L 0 {\displaystyle PL_{0}} and ν {\displaystyle \nu } are determined experimentally; d 0 {\displaystyle d_{0}} is selected for ...
The Hata model is a radio propagation model for predicting the path loss of cellular transmissions in exterior environments, valid for microwave frequencies from 150 to 1500 MHz. It is an empirical formulation based on the data from the Okumura model , and is thus also commonly referred to as the Okumura–Hata model . [ 1 ]
L = The median path loss. Unit: decibel (dB). L 0 = The reference path loss along 1 km. Unit: decibel (dB). = The slope of the path loss curve. Unit: decibels per decade. d = The distance on which the path loss is to be calculated. Unit: kilometer (km). F A = Adjustment factor
This model, which was first introduced by John Egli in his 1957 paper, [1] was derived from real-world data on UHF and VHF television transmissions in several large cities. It predicts the total path loss for a point-to-point link. Typically used for outdoor line-of-sight transmission, this model provides the path loss as a single quantity.
The ITU terrain loss model is a radio propagation model that provides a method to predict the median path loss for a telecommunication link. Developed on the basis of diffraction theory, this model predicts the path loss as a function of the height of path blockage and the First Fresnel zone for the transmission link.