enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    To state this formally, in general an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠dr dt⁠), and its acceleration (the second derivative of r, a = ⁠d2r dt2⁠), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  4. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. Consider an object A moving with velocity vector v and an object B with velocity vector w ; these absolute velocities are typically expressed in the same inertial reference frame .

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [11] [12]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.

  7. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    In two dimensions (non-relativistic) Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors ...

  8. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    e. In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p ...

  9. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Stokes' law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube.