enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().

  3. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  4. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    If p is an odd prime, there are always irreducible polynomials of the form X 2 − r, with r in GF(p). More precisely, the polynomial X 2 − r is irreducible over GF(p) if and only if r is a quadratic non-residue modulo p (this is almost the definition of a quadratic non-residue).

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In algebra, Gauss's lemma, [1] named after Carl Friedrich Gauss, is a theorem [note 1] about polynomials over the integers, or, more generally, over a unique factorization domain (that is, a ring that has a unique factorization property similar to the fundamental theorem of arithmetic). Gauss's lemma underlies all the theory of factorization ...

  6. Rabin fingerprint - Wikipedia

    en.wikipedia.org/wiki/Rabin_fingerprint

    Given an n-bit message m 0,...,m n-1, we view it as a polynomial of degree n-1 over the finite field GF(2). = + + … +We then pick a random irreducible polynomial ⁠ ⁠ of degree k over GF(2), and we define the fingerprint of the message m to be the remainder () after division of () by () over GF(2) which can be viewed as a polynomial of degree k − 1 or as a k-bit number.

  7. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  8. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    The minimal polynomial of an element, if it exists, is a member of F[x], the ring of polynomials in the variable x with coefficients in F. Given an element α of E, let J α be the set of all polynomials f(x) in F[x] such that f(α) = 0. The element α is called a root or zero of each polynomial in J α

  9. Carry-less product - Wikipedia

    en.wikipedia.org/wiki/Carry-less_product

    The elements of GF(2 n), i.e. a finite field whose order is a power of two, are usually represented as polynomials in GF(2)[X]. Multiplication of two such field elements consists of multiplication of the corresponding polynomials, followed by a reduction with respect to some irreducible polynomial which is taken from the construction of the field.