Search results
Results from the WOW.Com Content Network
every principal submatrix of A is copositive as well. In particular, the entries on the main diagonal must be nonnegative. the spectral radius ρ(A) is an eigenvalue of A. [3] Every copositive matrix of order less than 5 can be expressed as the sum of a positive semidefinite matrix and a nonnegative matrix. [4]
In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:
A principal submatrix is a square submatrix obtained by removing certain rows and columns. The definition varies from author to author. The definition varies from author to author. According to some authors, a principal submatrix is a submatrix in which the set of row indices that remain is the same as the set of column indices that remain.
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
If is invertible, then it admits an LU (or LDU) factorization if and only if all its leading principal minors [6] are nonzero [7] (for example [] does not admit an LU or LDU factorization). If A {\textstyle A} is a singular matrix of rank k {\textstyle k} , then it admits an LU factorization if the first k {\textstyle k} leading principal ...
He did important research on invariant factors, integral matrices, principal submatrices, and the Baker-Campbell-Hausdorff formula. [7] [10] His research was honored with his appointment as lecturer for the 1988 Johns Hopkins Summer Lecture Series. [8]
If the matrix that corresponds to a principal minor is a square upper-left submatrix of the larger matrix (i.e., it consists of matrix elements in rows and columns from 1 to k, also known as a leading principal submatrix), then the principal minor is called a leading principal minor (of order k) or corner (principal) minor (of order k). [3]
Equivalently, the second-order conditions that are sufficient for a local minimum or maximum can be expressed in terms of the sequence of principal (upper-leftmost) minors (determinants of sub-matrices) of the Hessian; these conditions are a special case of those given in the next section for bordered Hessians for constrained optimization—the ...