enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  3. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamic entropy provides a comparative measure of the amount of decrease in internal energy and the corresponding increase in internal energy of the surroundings at a given temperature. In many cases, a visualization of the second law is that energy of all types changes from being localized to becoming dispersed or spread out, if it is ...

  4. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. [9] [15] The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the ...

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    For example, in the Carnot cycle, while the heat flow from a hot reservoir to a cold reservoir represents the increase in the entropy in a cold reservoir, the work output, if reversibly and perfectly stored, represents the decrease in the entropy which could be used to operate the heat engine in reverse, returning to the initial state; thus the ...

  6. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    The entropy of the room has decreased. However, the entropy of the glass of ice and water has increased more than the entropy of the room has decreased. In an isolated system, such as the room and ice water taken together, the dispersal of energy from warmer to cooler regions always results in a net increase in entropy. Thus, when the system of ...

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = ⁡ (), = ((+) ⁡ (+) ⁡ ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...

  8. Fluctuation theorem - Wikipedia

    en.wikipedia.org/wiki/Fluctuation_theorem

    The second law of thermodynamics, which predicts that the entropy of an isolated system out of equilibrium should tend to increase rather than decrease or stay constant, stands in apparent contradiction with the time-reversible equations of motion for classical and quantum systems. The time reversal symmetry of the equations of motion show that ...

  9. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    The von Neumann entropy formula is an extension of the Gibbs entropy formula to the quantum mechanical case. It has been shown [ 1 ] that the Gibbs Entropy is equal to the classical "heat engine" entropy characterized by d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\!} , and the generalized Boltzmann distribution is a sufficient and ...