Search results
Results from the WOW.Com Content Network
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
An example of an incorrect result is provided by the NGS online utility, which returns a distance that is about 5 km too long. Vincenty suggested a method of accelerating the convergence in such cases (Rapp, 1993).
Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ , longitude (east/west) λ , and ellipsoidal height h (also known as geodetic height [ 1 ] ).
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
The distance formula is simpler when written in terms of the ... for example, (+) = + = (+ +), and ... it can be used to write the arc length in terms of the geodetic ...
Grid-based transformations directly convert map coordinates from one (map-projection, geodetic datum) pair to map coordinates of another (map-projection, geodetic datum) pair. An example is the NADCON method for transforming from the North American Datum (NAD) 1927 to the NAD 1983 datum. [ 26 ]
For example, the green arrows show that Donetsk (green circle) at 48°N has a Δ long of 74.63 km/° (1.244 km/min, 20.73 m/sec etc) and a Δ lat of 111.2 km/° (1.853 km/min, 30.89 m/sec etc). When the Earth is modelled by an ellipsoid this arc length becomes [ 41 ] [ 42 ]