Search results
Results from the WOW.Com Content Network
The relationship between chemistry and physics is a topic of debate in the philosophy of science. The issue is a complicated one, since both physics and chemistry are divided into multiple subfields, each with their own goals. A major theme is whether, and in what sense, chemistry can be said to "reduce" to physics. [1] [2]
The term "chemical physics" in its modern sense was first used by the German scientist A. Eucken, who published "A Course in Chemical Physics" in 1930. Prior to this, in 1927, the publication "Electronic Chemistry" by V. N. Kondrat'ev, N. N. Semenov, and Iu. B. Khariton hinted at the meaning of "chemical physics" through its title.
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria. Physical chemistry, in contrast to chemical ...
Chemistry is the scientific study of the properties and behavior of matter. [1] It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances.
Physical chemistry and chemical physics: Chemistry investigated via physical methods like laser techniques, scanning tunneling microscope, etc. The formal distinction between both fields is that physical chemistry is a branch of chemistry while chemical physics is a branch of physics. In practice this distinction is quite vague.
Steam and liquid water are two different forms of the same pure chemical substance, water. A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. [13] [14] Chemical substances may take the form of a single element or chemical compounds.
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. [1]
In recent years, [when?] thermal physics has applied the definition of chemical potential to systems in particle physics and its associated processes. For example, in a quark–gluon plasma or other QCD matter , at every point in space there is a chemical potential for photons , a chemical potential for electrons, a chemical potential for ...