enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Möbius function - Wikipedia

    en.wikipedia.org/wiki/Möbius_function

    The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [ i ] [ ii ] [ 2 ] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula .

  3. Möbius inversion formula - Wikipedia

    en.wikipedia.org/wiki/Möbius_inversion_formula

    For example, if one starts with Euler's totient function φ, and repeatedly applies the transformation process, one obtains: φ the totient function; φ ∗ 1 = I, where I(n) = n is the identity function; I ∗ 1 = σ 1 = σ, the divisor function; If the starting function is the Möbius function itself, the list of functions is: μ, the Möbius ...

  4. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    The existence of the inverse Möbius transformation and its explicit formula are easily derived by the composition of the inverse functions of the simpler transformations. That is, define functions g 1, g 2, g 3, g 4 such that each g i is the inverse of f i.

  5. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    one of the Gegenbauer functions in analytic number theory (may be replaced by the capital form of the Latin letter P). represents: one of the Gegenbauer functions in analytic number theory. the Dickman-de Bruijn function; the radius in a polar, cylindrical, or spherical coordinate system; the correlation coefficient in statistics

  6. Linear fractional transformation - Wikipedia

    en.wikipedia.org/wiki/Linear_fractional...

    Each model has a group of isometries that is a subgroup of the Mobius group: the isometry group for the disk model is SU(1, 1) where the linear fractional transformations are "special unitary", and for the upper half-plane the isometry group is PSL(2, R), a projective linear group of linear fractional transformations with real entries and ...

  7. Mertens function - Wikipedia

    en.wikipedia.org/wiki/Mertens_function

    Mertens function to n = 10 000 Mertens function to n = 10 000 000. In number theory, the Mertens function is defined for all positive integers n as = = (), where () is the Möbius function. The function is named in honour of Franz Mertens.

  8. Selberg sieve - Wikipedia

    en.wikipedia.org/wiki/Selberg_sieve

    In terms of sieve theory the Selberg sieve is of combinatorial type: that is, derives from a careful use of the inclusion–exclusion principle.Selberg replaced the values of the Möbius function which arise in this by a system of weights which are then optimised to fit the given problem.

  9. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The partial sum of the sifting function alternately over- and undercounts, so the remainder term will be huge. Brun's idea to improve this was to replace () in the sifting function with a weight sequence () consisting of restricted Möbius functions.