enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    is the velocity of the Man relative to the Train, v T ∣ E {\displaystyle \mathbf {v} _{T\mid E}} is the velocity of the T rain relative to E arth. Fully legitimate expressions for "the velocity of A relative to B" include "the velocity of A with respect to B" and "the velocity of A in the coordinate system where B is always at rest".

  3. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    where F ext is the net external force on the body, v rel is the relative velocity of the escaping or incoming mass with respect to the center of mass of the body, and v is the velocity of the body. [3] In astrodynamics, which deals with the mechanics of rockets, the term v rel is often called the effective exhaust velocity and denoted v e. [4]

  4. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Angular velocity: the angular velocity ω is the rate at which the angular position θ changes with respect to time t: = The angular velocity is represented in Figure 1 by a vector Ω pointing along the axis of rotation with magnitude ω and sense determined by the direction of rotation as given by the right-hand rule.

  5. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    A car is moving in high speed during a championship, with respect to the ground the position is changing according to time hence the car is in relative motion . In physics, motion is when an object changes its position with respect to a reference point in a given time.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...

  7. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    When the relative velocity is zero, is simply equal to 1, and the relativistic mass is reduced to the rest mass as one can see in the next two equations below. As the velocity increases toward the speed of light c , the denominator of the right side approaches zero, and consequently γ {\displaystyle \gamma } approaches infinity.

  8. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: = Similarly, the relative velocity of object B moving with velocity w, relative to object A moving with velocity v is: = Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest.

  9. Wigner rotation - Wikipedia

    en.wikipedia.org/wiki/Wigner_rotation

    The velocity u can be thought of the velocity of a frame Σ′ relative to a frame Σ, and v is the velocity of an object, say a particle or another frame Σ′′ relative to Σ′. In the present context, all velocities are best thought of as relative velocities of frames unless otherwise specified.