Search results
Results from the WOW.Com Content Network
It is also called Osgood–Brown theorem is that for holomorphic functions of several complex variables, the singularity is a accumulation point, not an isolated point. This means that the various properties that hold for holomorphic functions of one-variable complex variables do not hold for holomorphic functions of several complex variables.
S. Fokas, Complex Variables: Introduction and Applications (Cambridge, 2003). Ahlfors, L., Complex Analysis (McGraw-Hill, 1953). Cartan, H., Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. (Hermann, 1961). English translation, Elementary Theory of Analytic Functions of One or Several Complex Variables.
More generally, a function of several complex variables that is square integrable over every compact subset of its domain is analytic if and only if it satisfies the Cauchy–Riemann equations in the sense of distributions. Functions of several complex variables are in some basic ways more complicated than functions of a single complex variable.
For n = 2, this system is equivalent to the standard Cauchy–Riemann equations of complex variables, and the solutions are holomorphic functions. In dimension n > 2 , this is still sometimes called the Cauchy–Riemann system, and Liouville's theorem implies, under suitable smoothness assumptions, that any such mapping is a Möbius ...
Analytic functions of several variables have some of the same properties as analytic functions of one variable. However, especially for complex analytic functions, new and interesting phenomena show up in 2 or more complex dimensions: Zero sets of complex analytic functions in more than one variable are never discrete.
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematics that investigates functions of complex numbers.It is useful in many branches of mathematics, including number theory and applied mathematics; as well as in physics, including hydrodynamics, thermodynamics, and electrical engineering.
A solution of a polynomial system is a tuple of values of (x 1, ..., x m) that satisfies all equations of the polynomial system. The solutions are sought in the complex numbers, or more generally in an algebraically closed field containing the coefficients. In particular, in characteristic zero, all complex solutions are sought.
One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include: direct integration of a complex-valued function along a curve in the complex plane; application of the Cauchy integral formula; and; application of the residue ...