Search results
Results from the WOW.Com Content Network
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
The group delay is defined as the derivative of the phase with respect to angular frequency: = (()) The gain and the group delay for a 5th-order type I Chebyshev filter with ε=0.5 are plotted in the graph on the left. Its stop band has no ripples.
In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency.The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay.
The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space. For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as ...
A closely related yet independent quantity is the group-delay dispersion (GDD), defined such that group-velocity dispersion is the group-delay dispersion per unit length. GDD is commonly used as a parameter in characterizing layered mirrors, where the group-velocity dispersion is not particularly well-defined, yet the chirp induced after ...
The signal delay of a wire or other circuit, measured as group delay or phase delay or the effective propagation delay of a digital transition, may be dominated by resistive-capacitive effects, depending on the distance and other parameters, or may alternatively be dominated by inductive, wave, and speed of light effects in other realms.
A plot of the gain and group delay for a fourth-order low-pass Bessel filter. Note that the transition from the passband to the stopband is much slower than for other filters, but the group delay is practically constant in the passband. The Bessel filter maximizes the flatness of the group delay curve at zero frequency.
In 1975 Ed Long [1] in cooperation with Ronald J. Wickersham invented the first technique to Time-Align a loudspeaker systems. In 1976 Long presented "A Time-Align Technique for Loudspeakers System Design" [2] at the 54th AES convention demonstrating the use of the Time-Align generator to design improved crossover networks for multi-way loudspeakers systems.