enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  3. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    A cantilever Timoshenko beam under a point load at the free end. For a cantilever beam, one boundary is clamped while the other is free. Let us use a right handed coordinate system where the direction is positive towards right and the direction is positive upward.

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending. Deflection of a beam deflected symmetrically and principle of superposition. Compressive and tensile forces develop in the direction of the beam axis under bending loads.

  5. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    [1] [2] The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end ...

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    This vibrating glass beam may be modeled as a cantilever beam with acceleration, variable linear density, variable section modulus, some kind of dissipation, springy end loading, and possibly a point mass at the free end. Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the ...

  7. Sandwich theory - Wikipedia

    en.wikipedia.org/wiki/Sandwich_theory

    Bending of a sandwich beam. The total deflection is the sum of a bending part w b and a shear part w s Shear strains during the bending of a sandwich beam. Let the sandwich beam be subjected to a bending moment and a shear force . Let the total deflection of the beam due to these loads be .

  8. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  9. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.