Search results
Results from the WOW.Com Content Network
In plants, spores are usually haploid and unicellular and are produced by meiosis in the sporangium of a diploid sporophyte. In some rare cases, a diploid spore is also produced in some algae, or fungi. [ 6 ]
Flowering plants contain microsporangia in the anthers of stamens (typically four microsporangia per anther) and megasporangia inside ovules inside ovaries. In all seed plants, spores are produced by meiosis and develop into gametophytes while still inside the sporangium. The microspores become microgametophytes (pollen).
Diagram showing the alternation of generations between a diploid sporophyte (bottom) and a haploid gametophyte (top) A sporophyte (/ ˈ s p ɔːr. ə ˌ f aɪ t /) is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.
Haploid spores germinate to form swarm cells or myxamoebae. These fuse in a process referred to as plasmogamy and karyogamy to form a diploid zygote. The zygote develops into a plasmodium, and the mature plasmodium produces, depending on the species, one to many fruiting bodies containing haploid spores.
Sporogenesis is the production of spores in biology.The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle.
Sporophytes produce haploid spores by meiosis, that grow into gametophytes. Bryophytes are gametophyte dominant, [12] meaning that the more prominent, longer-lived plant is the haploid gametophyte. The diploid sporophytes appear only occasionally and remain attached to and nutritionally dependent on the gametophyte. [13]
During megasporogenesis, a diploid precursor cell, the megasporocyte or megaspore mother cell, undergoes meiosis to produce initially four haploid cells (the megaspores). [1] Angiosperms exhibit three patterns of megasporogenesis: monosporic, bisporic, and tetrasporic , also known as the Polygonum type, the Alisma type, and the Drusa type ...
This means that a diploid generation (the sporophyte, which produces spores) is followed by a haploid generation (the gametophyte or prothallus, which produces gametes). Pteridophytes differ from bryophytes in that the sporophyte is branched and generally much larger and more conspicuous, and from seed plants in that both generations are ...