Search results
Results from the WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in finding the confidence interval for estimating the population standard deviation of a normal distribution from a sample standard ...
The chi-squared test, when used with the standard approximation that a chi-squared distribution is applicable, has the following assumptions: [7] Simple random sample The sample data is a random sampling from a fixed distribution or population where every collection of members of the population of the given sample size has an equal probability ...
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
Assuming H 0 is true, there is a fundamental result by Samuel S. Wilks: As the sample size approaches , and if the null hypothesis lies strictly within the interior of the parameter space, the test statistic defined above will be asymptotically chi-squared distributed with degrees of freedom equal to the difference in dimensionality of and . [14]
As regards weighting, one can either weight all of the measured ages equally, or weight them by the proportion of the sample that they represent. For example, if two thirds of the sample was used for the first measurement and one third for the second and final measurement, then one might weight the first measurement twice that of the second.
In statistics, minimum chi-square estimation is a method of estimation of unobserved quantities based on observed data. [1]In certain chi-square tests, one rejects a null hypothesis about a population distribution if a specified test statistic is too large, when that statistic would have approximately a chi-square distribution if the null hypothesis is true.