Search results
Results from the WOW.Com Content Network
Optical interference between two point sources that have different wavelengths and separations of sources. A point source produces a spherical wave. If the light from two point sources overlaps, the interference pattern maps out the way in which the phase difference between the two waves varies in space.
In 1967, Pfleegor and Mandel demonstrated two-source interference using two separate lasers as light sources. [ 60 ] [ 61 ] It was shown experimentally in 1972 that in a double-slit system where only one slit was open at any time, interference was nonetheless observed provided the path difference was such that the detected photon could have ...
In an alternating current (AC) electric power system, synchronization is the process of matching the frequency, phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.
Two slits illuminated by one source show an interference pattern. The source is far to the left in the diagram, behind collimators that create a parallel beam. This combination ensures that a wave from the source strikes both slits at the same part of the wave cycle: the wave will have coherence.
A confluence can occur in several configurations: at the point where a tributary joins a larger river ; or where two streams meet to become the source of a river of a new name (such as the confluence of the Monongahela and Allegheny rivers, forming the Ohio River); or where two separated channels of a river (forming a river island) rejoin ...
No physical current source is ideal. For example, no physical current source can operate when applied to an open circuit. There are two characteristics that define a current source in real life. One is its internal resistance and the other is its compliance voltage. The compliance voltage is the maximum voltage that the current source can ...
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.
Source transformations are easy to compute using Ohm's law. If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance. The converse also holds: if a current source in parallel ...