enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Metabolomics is a very data heavy subject, and often involves sifting through massive amounts of irrelevant data before finding any conclusions. Data mining has allowed this relatively new field of medical research to grow considerably within the last decade, and will likely be the method of which new research is found within the subject. [28]

  3. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]

  4. Data model - Wikipedia

    en.wikipedia.org/wiki/Data_model

    Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.

  5. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  7. SEMMA - Wikipedia

    en.wikipedia.org/wiki/SEMMA

    The Modify phase contains methods to select, create and transform variables in preparation for data modeling. Model. In the Model phase the focus is on applying various modeling (data mining) techniques on the prepared variables in order to create models that possibly provide the desired outcome. Assess. The last phase is Assess.

  8. Industry standard data model - Wikipedia

    en.wikipedia.org/wiki/Industry_standard_data_model

    An industry standard data model, or simply standard data model, is a data model that is widely used in a particular industry. The use of standard data models makes the exchange of information easier and faster because it allows heterogeneous organizations to share an agreed vocabulary, semantics, format, and quality standard for data.

  9. Dimensional modeling - Wikipedia

    en.wikipedia.org/wiki/Dimensional_modeling

    Dimensional models are more denormalized and optimized for data querying, while normalized models seek to eliminate data redundancies and are optimized for transaction loading and updating. The predictable framework of a dimensional model allows the database to make strong assumptions about the data which may have a positive impact on performance.