Search results
Results from the WOW.Com Content Network
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of ...
In natural language processing a w-shingling is a set of unique shingles (therefore n-grams) each of which is composed of contiguous subsequences of tokens within a document, which can then be used to ascertain the similarity between documents. The symbol w denotes the quantity of tokens in each shingle selected, or solved for.
Distributional semantic models have been applied successfully to the following tasks: finding semantic similarity between words and multi-word expressions; word clustering based on semantic similarity; automatic creation of thesauri and bilingual dictionaries; word sense disambiguation; expanding search requests using synonyms and associations;
Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the documents and terms.
OpenSearch (software) and Solr: the two most well-known search engine programs (many smaller exist) based on Lucene. Gensim is a Python+ NumPy framework for Vector Space modelling. It contains incremental (memory-efficient) algorithms for term frequency-inverse document frequency , latent semantic indexing , random projections and latent ...
It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a ...
ESA was designed by Evgeniy Gabrilovich and Shaul Markovitch as a means of improving text categorization [2] and has been used by this pair of researchers to compute what they refer to as "semantic relatedness" by means of cosine similarity between the aforementioned vectors, collectively interpreted as a space of "concepts explicitly defined ...
Document capacity / Batch processing: Number of documents the system can process per unit of time. [citation needed] Check intensity: How often and for which types of document fragments (paragraphs, sentences, fixed-length word sequences) does the system query external resources, such as search engines. Comparison algorithm type