Search results
Results from the WOW.Com Content Network
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
The process of duplicating DNA is called DNA replication, and it takes place by first unwinding the duplex DNA molecule, starting at many locations called DNA replication origins, followed by an unzipping process that unwinds the DNA as it is being copied. However, replication does not start at all the different origins at once.
Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome .
The replication of DNA with a broken sugar-phosphate backbone is most likely facilitated by the homologous recombination proteins that confer resistance to ionizing radiation. The activity of PRR enzymes is regulated by the SOS response in bacteria and may be controlled by the postreplication checkpoint response in eukaryotes.
The polymerase is held onto the DNA strand by PCNA (Proliferating Cell Nuclear Antigen). PCNA forms typical patterns in the nucleus of the cell through which the current cell cycle can be determined. The polymerase synthesizes the missing part of the broken strand. When the broken strand is rebuilt, both strands need to uncouple again.
Damage to DNA that occurs naturally can result from metabolic or hydrolytic processes. Metabolism releases compounds that damage DNA including reactive oxygen species, reactive nitrogen species, reactive carbonyl species, lipid peroxidation products, and alkylating agents, among others, while hydrolysis cleaves chemical bonds in DNA. [8]
Formation of the pre-RC is required for DNA replication to occur. Complete and faithful replication of the genome ensures that each daughter cell will carry the same genetic information as the parent cell. Accordingly, formation of the pre-RC is a very important part of the cell cycle.
During telomeric DNA replication in the S/G2 and G1 phases of the cell cycle, the 3' lagging strand leaves a short overhang called a G-tail. [4] [3] Telomeric DNA ends at the 3' G tail end because the 3' lagging strand extends without its complementary 5' C leading strand. The G tail provide a major function to telomeric DNA such that the G ...