enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    using the Hamilton product, where the vector part of the pure quaternion L(p ′) = (0, r x, r y, r z) is the new position vector of the point after the rotation. In a programmatic implementation, the conjugation is achieved by constructing a pure quaternion whose vector part is p, and then performing

  3. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Even though every quaternion can be viewed as a vector in a four-dimensional vector space, it is common to refer to the vector part as vectors in three-dimensional space. With this convention, a vector is the same as an element of the vector space R 3 . {\displaystyle \mathbb {R} ^{3}.} [ b ]

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.

  5. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ ⁡ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...

  6. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:

  7. Slerp - Wikipedia

    en.wikipedia.org/wiki/Slerp

    The derivative of slerp(q 0, q 1; t) with respect to t, assuming the ends are fixed, is log(q 1 q 0 −1) times the function value, where the quaternion natural logarithm in this case yields half the 3D angular velocity vector. The initial tangent vector is parallel transported to each tangent along the curve; thus the curve is, indeed, a geodesic.

  8. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    Vectors and scalars can be added. When a vector is added to a scalar, a completely different entity, a quaternion is created. A vector plus a scalar is always a quaternion even if the scalar is zero. If the scalar added to the vector is zero then the new quaternion produced is called a right quaternion. It has an angle characteristic of 90 degrees.

  9. Rotor (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotor_(mathematics)

    A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. [1] The term originated with William Kingdon Clifford, [2] in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). [3]