enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biconjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Biconjugate_gradient_method

    In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations A x = b . {\displaystyle Ax=b.\,} Unlike the conjugate gradient method , this algorithm does not require the matrix A {\displaystyle A} to be self-adjoint , but instead one needs to perform ...

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  4. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ((+)) < A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute ...

  5. Preconditioner - Wikipedia

    en.wikipedia.org/wiki/Preconditioner

    The preconditioned matrix or is rarely explicitly formed. Only the action of applying the preconditioner solve operation to a given vector may need to be computed. Typically there is a trade-off in the choice of .

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ⁡ ( B ) d . {\displaystyle \det ...

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b', where b' is the projection of b onto the column space of A. The best ...

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The system Q(Rx) = b is solved by Rx = Q T b = c, and the system Rx = c is solved by 'back substitution'. The number of additions and multiplications required is about twice that of using the LU solver, but no more digits are required in inexact arithmetic because the QR decomposition is numerically stable .

  9. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    where is the matrix formed by replacing the i-th column of A by the column vector b. A more general version of Cramer's rule [13] considers the matrix equation = where the n × n matrix A has a nonzero determinant, and X, B are n × m matrices.