Search results
Results from the WOW.Com Content Network
Special cases are called the real line R 1, the real coordinate plane R 2, and the real coordinate three-dimensional space R 3. With component-wise addition and scalar multiplication, it is a real vector space. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the ...
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
The field of complex numbers gives complex coordinate space C n. The a + bi form of a complex number shows that C itself is a two-dimensional real vector space with coordinates (a,b). Similarly, the quaternions and the octonions are respectively four- and eight-dimensional real vector spaces, and C n is a 2n-dimensional real vector space.
Standard names for the coordinates in the three axes are abscissa, ordinate and applicate. [9] The coordinates are often denoted by the letters x, y, and z. The axes may then be referred to as the x-axis, y-axis, and z-axis, respectively. Then the coordinate planes can be referred to as the xy-plane, yz-plane, and xz-plane.
For example, the coordinate surfaces obtained by holding ρ constant in the spherical coordinate system are the spheres with center at the origin. In three-dimensional space the intersection of two coordinate surfaces is a coordinate curve. In the Cartesian coordinate system we may speak of coordinate planes. Similarly, coordinate hypersurfaces ...
A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space.
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
Coordinate charts are mathematical objects of topological manifolds, and they have multiple applications in theoretical and applied mathematics. When a differentiable structure and a metric are defined, greater structure exists, and this allows the definition of constructs such as integration and geodesics .