Search results
Results from the WOW.Com Content Network
The troposphere is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator, [17] with some variation due
The thermosphere (or the upper atmosphere) is the height region above 85 kilometres (53 mi), while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of 45 kilometres (28 mi) and causes the ozone layer.
The red color of the chromosphere could be seen during the solar eclipse of August 11, 1999.. The density of the Sun's chromosphere decreases exponentially with distance from the center of the Sun by a factor of roughly 10 million, from about 2 × 10 −4 kg/m 3 at the chromosphere's inner boundary to under 1.6 × 10 −11 kg/m 3 at the outer boundary. [7]
The layer has the largest concentration of nitrogen. The atmosphere of the Earth is in five layers: (i) the exosphere at 600+ km; (ii) the thermosphere at 600 km; (iii) the mesosphere at 95–120 km; (iv) the stratosphere at 50–60 km; and (v) the troposphere at 8–15 km.
Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. [1] On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, [2] [3] just below the stratosphere.
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
The planetary boundary layer is different between day and night. During the day inversion layers formed during the night are broken up as a consequence of the turbulent rise of heated air. [26] The boundary layer stabilises "shortly before sunset" and remains so during the night. [26] All this make up a daily cycle. [26]
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...