Search results
Results from the WOW.Com Content Network
The median of a finite list of numbers is the "middle" number, when those numbers are listed in order from smallest to greatest. If the data set has an odd number of observations, the middle one is selected (after arranging in ascending order). For example, the following list of seven numbers, 1, 3, 3, 6, 7, 8, 9
The median of medians method partitions the input into sets of five elements, and uses some other non-recursive method to find the median of each of these sets in constant time per set. It then recursively calls itself to find the median of these n / 5 {\displaystyle n/5} medians.
The weighted median can be computed by sorting the set of numbers and finding the smallest set of numbers which sum to half the weight of the total weight. This algorithm takes () time. There is a better approach to find the weighted median using a modified selection algorithm. [1]
Firstly, computing median of an odd list is faster and simpler; while one could use an even list, this requires taking the average of the two middle elements, which is slower than simply selecting the single exact middle element. Secondly, five is the smallest odd number such that median of medians works.
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
The median of the first group is the lower or first quartile, and is equal to (0 + 1)/2 = 0.5. The median of the second group is the upper or third quartile, and is equal to (27 + 61)/2 = 44. The smallest and largest observations are 0 and 63. So the five-number summary would be 0, 0.5, 7.5, 44, 63.
In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list. For example, the mean or average of the numbers 2, 3, 4, 7, and 9 (summing ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.