enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  3. Undefined (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Undefined_(mathematics)

    This operation is undefined in arithmetic, and therefore deductions based on division by zero can be contradictory. If we assume that a non-zero answer n {\displaystyle n} exists, when some number k ∣ k ≠ 0 {\displaystyle k\mid k\neq 0} is divided by zero, then that would imply that k = n × 0 {\displaystyle k=n\times 0} .

  4. Y-intercept - Wikipedia

    en.wikipedia.org/wiki/Y-intercept

    Functions which are undefined at = have no -intercept. If the function is linear and is expressed in slope-intercept form as f ( x ) = a + b x {\displaystyle f(x)=a+bx} , the constant term a {\displaystyle a} is the y {\displaystyle y} -coordinate of the y {\displaystyle y} -intercept.

  5. Talk:Slope/Archive 1 - Wikipedia

    en.wikipedia.org/wiki/Talk:Slope/Archive_1

    The introduction says: "Slope, as a practical term, is not defined for theoretically perfectly horizontal or vertical lines." I have no argument that the slope of a vertical line is undefined, as has been discussed on this page, but a horizontal line? Isn't the slope zero, as I was taught in high school?

  6. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    When a geometry is described by a set of axioms, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry.

  7. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written

  8. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    Similarly, when dealing with complex variables, a critical point is a point in the function's domain where its derivative is equal to zero (or the function is not holomorphic). [3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [5]

  9. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The coefficient a is called the slope of the function and of the line (see below). If the slope is a = 0 {\displaystyle a=0} , this is a constant function f ( x ) = b {\displaystyle f(x)=b} defining a horizontal line, which some authors exclude from the class of linear functions. [ 3 ]