enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity , the modern theory of gravity .

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.

  4. Curvature of Riemannian manifolds - Wikipedia

    en.wikipedia.org/wiki/Curvature_of_Riemannian...

    The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) ⁠ ⁠ and Lie bracket ⁠ [,] ⁠ by the following formula: (,) = [,].

  5. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplacian in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function.

  6. Scalar curvature - Wikipedia

    en.wikipedia.org/wiki/Scalar_curvature

    Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = ⁡. The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.

  7. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the Riemann curvature tensor and Ricci curvature are parallel.

  8. Sectional curvature - Wikipedia

    en.wikipedia.org/wiki/Sectional_curvature

    Since any Riemannian metric is parallel with respect to its Levi-Civita connection, this shows that the Riemann tensor of any constant-curvature space is also parallel. The Ricci tensor is then given by Ric = ( n − 1 ) κ g {\displaystyle \operatorname {Ric} =(n-1)\kappa g} and the scalar curvature is n ( n − 1 ) κ . {\displaystyle n(n-1 ...

  9. Curvature form - Wikipedia

    en.wikipedia.org/wiki/Curvature_form

    For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),