Search results
Results from the WOW.Com Content Network
The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity , the modern theory of gravity .
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.
The curvature of a Riemannian manifold can be described in various ways; the most standard one is the curvature tensor, given in terms of a Levi-Civita connection (or covariant differentiation) and Lie bracket [,] by the following formula: (,) = [,].
Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplacian in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function.
Given a Riemannian metric g, the scalar curvature Scal is defined as the trace of the Ricci curvature tensor with respect to the metric: [1] = . The scalar curvature cannot be computed directly from the Ricci curvature since the latter is a (0,2)-tensor field; the metric must be used to raise an index to obtain a (1,1)-tensor field in order to take the trace.
Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the Riemann curvature tensor and Ricci curvature are parallel.
Since any Riemannian metric is parallel with respect to its Levi-Civita connection, this shows that the Riemann tensor of any constant-curvature space is also parallel. The Ricci tensor is then given by Ric = ( n − 1 ) κ g {\displaystyle \operatorname {Ric} =(n-1)\kappa g} and the scalar curvature is n ( n − 1 ) κ . {\displaystyle n(n-1 ...
For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e. (,) = (,),