Search results
Results from the WOW.Com Content Network
These mechanisms can overlap in the brittle-ductile settings. Deformation mechanisms are commonly characterized as brittle, ductile, and brittle-ductile. The driving mechanism responsible is an interplay between internal (e.g. composition, grain size and lattice-preferred orientation) and external (e.g. temperature and fluid pressure) factors.
The plastic deformation of ductile metals is important as it can be a sign of the potential failure of the metal. Yet, the point at which the material exhibits a ductile behavior versus a brittle behavior is not only dependent on the material itself but also on the temperature at which the stress is being applied to the material.
Typical brittle materials like glass do not show any plastic deformation but fail while the deformation is elastic. One of the characteristics of a brittle failure is that the two broken parts can be reassembled to produce the same shape as the original component as there will not be a neck formation like in the case of ductile materials.
The failure of a material is usually classified into brittle failure or ductile failure . Depending on the conditions (such as temperature, state of stress, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.
The brittle–ductile transition zone is characterized by a change in rock failure mode, at an approximate average depth of 10–15 km (~ 6.2–9.3 miles) in continental crust, below which rock becomes less likely to fracture and more likely to deform ductilely. The zone exists because as depth increases confining pressure increases, and ...
A plastic material is one which does not obey Hooke's Law, and therefore deformation is not proportional to the applied load. Plastic materials are ductile materials. Plasticity theory can be used for some reinforced concrete structures assuming they are underreinforced, meaning that the steel reinforcement fails before the concrete does.
Ductile deformation is more likely at low strain rates (less than 10 −14 sec −1) in the middle and lower crust, but high strain rates can cause brittle deformation. At the highest strain rates, the rock may be so strongly heated that it briefly melts, forming a glassy rock called pseudotachylite .
The least brittle structural ceramics are silicon carbide (mainly by virtue of its high strength) and transformation-toughened zirconia. A different philosophy is used in composite materials, where brittle glass fibers, for example, are embedded in a ductile matrix such as polyester resin. When strained, cracks are formed at the glass–matrix ...