Search results
Results from the WOW.Com Content Network
The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis , by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism .
The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.
In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:
{{Graph, chart and plot templates | state = collapsed}} will show the template collapsed, i.e. hidden apart from its title bar. {{ Graph, chart and plot templates | state = autocollapse }} will show the template autocollapsed, i.e. if there is another collapsible item on the page (a navbox, sidebar , or table with the collapsible attribute ...
The Matrix Template Library (MTL) is a linear algebra library for C++ programs. The MTL uses template programming , which considerably reduces the code length. All matrices and vectors are available in all classical numerical formats: float , double , complex<float> or complex<double> .
The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:
In matrix theory, the rule of Sarrus is a mnemonic device for computing the determinant of a matrix named after the French mathematician Pierre Frédéric Sarrus. [ 1 ] Consider a 3 × 3 {\displaystyle 3\times 3} matrix
Main page; Contents; Current events; Random article; About Wikipedia; Contact us