Search results
Results from the WOW.Com Content Network
The third type of glucose 6-phosphatase deficiency, glucose 6-phosphatase-β deficiency, is characterized by a congenital neutropenia syndrome in which neutrophils exhibit enhanced endoplasmic reticulum (ER) stress, increased apoptosis, impaired energy homeostasis, and impaired functionality. [18]
G6PD deficiency results from mutations in the G6PD gene. G6PD gene contributes to the production of glucose-6-phosphate dehydrogenase. Chemical reactions involving glucose-6-phosphate dehydrogenase produce compounds that prevent reactive oxygen species from building up to toxic levels within red blood cells. If a reduction in the amount of ...
The last step of normal gluconeogenesis, like the last step of glycogenolysis, is the dephosphorylation of G6P by glucose-6-phosphatase to free glucose and PO 4. Thus glucose-6-phosphatase mediates the final, key, step in both of the two main processes of glucose production during fasting. The effect is amplified because the resulting high ...
A glycogen storage disease (GSD, also glycogenosis and dextrinosis) is a metabolic disorder caused by a deficiency of an enzyme or transport protein affecting glycogen synthesis, glycogen breakdown, or glucose breakdown, typically in muscles and/or liver cells. [1] GSD has two classes of cause: genetic and environmental.
Glucose-6-phosphate dehydrogenase deficiency is very common worldwide, and causes acute hemolytic anemia in the presence of simple infection, ingestion of fava beans, or reaction with certain medicines, antibiotics, antipyretics, and antimalarials. [3] Cell growth and proliferation are affected by G6PD. [20]
If glycogenolysis is taking place in the liver, G-6-P can be converted to glucose by the enzyme glucose 6-phosphatase (G6Pase); the glucose produced in the liver is then released to the bloodstream for use in other organs. Muscle cells in contrast do not have the enzyme glucose 6-phosphatase, so they cannot share their glycogen stores with the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
This gene encodes the catalytic subunit of glucose 6-phosphatase (G6Pase). G6Pase is located in the endoplasmic reticulum (ER) and catalyzes the hydrolysis of glucose 6-phosphate to glucose and phosphate in the last step of the gluconeogenic and glycogenolytic pathways. [5]