enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics. The tables below list all of the divisors of the numbers 1 to 1000.

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 2 1 × 3 2 may be replaced with 12 = 2 2 × 3 1; both have six divisors).

  4. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...

  5. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.

  6. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. The integer 12 is the first abundant number.

  7. Practical number - Wikipedia

    en.wikipedia.org/wiki/Practical_number

    Demonstration of the practicality of the number 12. In number theory, a practical number or panarithmic number [1] is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors ...

  8. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In abstract algebra, the concept of a maximal common divisor is needed to generalize greatest common divisors to number systems in which the common divisors of a set of elements may have more than one maximal element. In computational geometry, the maxima of a point set are maximal with respect to the partial order of coordinatewise domination.

  9. Friendly number - Wikipedia

    en.wikipedia.org/wiki/Friendly_number

    A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.