enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.

  3. List of Feynman diagrams - Wikipedia

    en.wikipedia.org/wiki/List_of_Feynman_diagrams

    In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram

  4. Two-photon physics - Wikipedia

    en.wikipedia.org/wiki/Two-photon_physics

    A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.

  5. Bhabha scattering - Wikipedia

    en.wikipedia.org/wiki/Bhabha_scattering

    Both the scattering and annihilation diagrams contribute to the transition matrix element. By letting k and k' represent the four-momentum of the positron, while letting p and p' represent the four-momentum of the electron, and by using Feynman rules one can show the following diagrams give these matrix elements:

  6. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...

  7. Møller scattering - Wikipedia

    en.wikipedia.org/wiki/Møller_scattering

    In quantum electrodynamics, there are two tree-level Feynman diagrams describing the process: a t-channel diagram in which the electrons exchange a photon and a similar u-channel diagram. Crossing symmetry , one of the tricks often used to evaluate Feynman diagrams, in this case implies that Møller scattering should have the same cross section ...

  8. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    Feynman diagram of electron–positron pair production. One must calculate multiple diagrams to get the net cross section. The exact analytic form for the cross section of pair production must be calculated through quantum electrodynamics in the form of Feynman diagrams and results in a complicated function. To simplify, the cross section can ...

  9. Initial and final state radiation - Wikipedia

    en.wikipedia.org/wiki/Initial_and_final_state...

    A Feynman diagram is a contribution of a particular class of particle paths, which join and split as described by the diagram. More precisely, and technically, a Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory.