Search results
Results from the WOW.Com Content Network
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :
A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = ( ), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
2-vectors correspond to the exterior power Λ 2 V; in the presence of an inner product, in coordinates these are the skew-symmetric matrices, which are geometrically considered as the special orthogonal Lie algebra (V) of infinitesimal rotations. This has (n 2) = 1 / 2 n(n − 1) dimensions, and allows one to interpret the differential ...
The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
where is the k-th 3-vector measurement in the reference frame, is the corresponding k-th 3-vector measurement in the body frame and is a 3 by 3 rotation matrix between the coordinate frames. [ 1 ] a k {\displaystyle a_{k}} is an optional set of weights for each observation.