Search results
Results from the WOW.Com Content Network
Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.
In the classic definition of the closeness centrality, the spread of information is modeled by the use of shortest paths. This model might not be the most realistic for all types of communication scenarios. Thus, related definitions have been discussed to measure closeness, like the random walk closeness centrality introduced by Noh and Rieger ...
In the mathematical field of topology, a uniform space is a set with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups , but the concept is designed to formulate the weakest axioms needed for most proofs ...
From a spatial point of view, nearness (a.k.a. proximity) is considered a generalization of set intersection.For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in).
In the context of algebraic structures, this closure is generally called the substructure generated or spanned by X, and one says that X is a generating set of the substructure. For example, a group is a set with an associative operation , often called multiplication , with an identity element , such that every element has an inverse element .
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.
A mathematical object is an abstract concept arising in mathematics. [1] Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas.
In mathematics, , the (real or complex) vector space of bounded sequences with the supremum norm, and = (,,), the vector space of essentially bounded measurable functions with the essential supremum norm, are two closely related Banach spaces. In fact the former is a special case of the latter.